8,162 research outputs found

    Quantum Wire-on-Well (WoW) Cell With Long Carrier Lifetime for Efficient Carrier Transport

    Get PDF
    A quantum wire-on-well (WoW) structure, taking advantage of the layer undulation of an In- GaAs/GaAs/GaAsP superlattice grown on a vicinal substrate, was demonstrated to enhance the carrier collection from the confinement levels and extend the carrier lifetime (220 ns) by approximately 4 times as compared with a planar reference superlattice. Strained InGaAs/GaAs/GaAsP superlattices were grown on GaAs substrates under exactly the same condition except for the substrate misorientation (0o- and 6o- off). The growth on a 6o-off substrate induced significant layer undulation as a result of step bunching and non-uniform precursor incorporation between steps and terraces whereas the growth on a substrate without miscut resulted in planar layers. The undulation was the most significant for InGaAs layers, forming periodically aligned InGaAs nanowires on planar wells, a wire-on-well structure. As for the photocurrent corresponding to the sub-bandgap range of GaAs, the light absorption by the WoW was extended to longer wavelengths and weakened as compared with the planar superlattice, and almost the same photocurrent was obtained for both the WoW and the planar superlattice. Open-circuit voltage for the WoW was not affected by the longer-wavelength absorption edge and the same value was obtained for the two structures. Furthermore, the superior carrier collection in the WoW, especially under forward biases, improved fill factor compared with the planer superlattice

    Magnetic Susceptibility for CaV4O9CaV_4O_9

    Full text link
    We examine experimental magnetic susceptibility χtot(T)\chi^{tot}(T) for CaV4_4O9_9 by fitting with fitting function αχmag(T)+c\alpha \chi^{mag}(T) + c. The function χmag(T)\chi^{mag}(T) is a power series of 1/T and the lowest order term is fixed as C/TC/T, where CC is the Curie constant as determined by the experimental gg-value (g=1.96). Fitting parameters are α\alpha, cc and expansion coefficients except for the first one in χmag(T)\chi^{mag}(T). We determine α\alpha and cc as α\alpha \simeq 0.73 and cc\simeq 0 for an experimental sample. We interpret α\alpha as the volume fraction of CaV4_4O9_9 in the sample and χmag(T)\chi^{mag}(T) as the susceptibility for the pure CaV4_4O9_9. The result of α1\alpha \ne 1 means that the sample includes nonmagnetic components. This interpretation consists with the result of a perturbation theory and a neutron scattering experiment.Comment: 4pages, 4figure

    Effect of Quantum Fluctuations on Magnetic Ordering in CaV3_3O7_7

    Full text link
    We present a theoretical model for CaV3_3O7_7: the 1/41/4-depleted square spin-1/21/2 Heisenberg model which includes both the nearest-neighbor coupling (JJ) and the next-nearest-neighbor coupling (JJ'), where JJ and JJ' are antiferromagnetic. Recent experiments of the neutron diffraction by Harashina et.al. report the magnetic ordering at low temperatures, which may be called as a stripe phase. It is shown that the observed spin structure is not stable in the classical theory. By employing the modified spin wave theory, we show that the stripe phase is stabilized by the quantum fluctuations for J/J>0.69J'/J > 0.69. In CaV3_3O7_7, the coupling constants are estimated as JJJ \sim J' by comparing the theoretical and experimental results.Comment: submitted to J. Phys. Soc. Jp

    An Examination of Chimpanzee Use in Human Cancer Research

    Get PDF
    Advocates of chimpanzee research claim the genetic similarity of humans and chimpanzees make them an indispensable research tool to combat human diseases. Given that cancer is a leading cause of human death worldwide, one might expect that if chimpanzees were needed for, or were productive in, cancer research, then they would have been widely used. This comprehensive literature analysis reveals that chimpanzees have scarcely been used in any form of cancer research, and that chimpanzee tumours are extremely rare and biologically different from human cancers. Often, chimpanzee citations described peripheral use of chimpanzee cells and genetic material in predominantly human genomic studies. Papers describing potential new cancer therapies noted significant concerns regarding the chimpanzee model. Other studies described interventions that have not been pursued clinically. Finally, available evidence indicates that chimpanzees are not essential in the development of therapeutic monoclonal antibodies. It would therefore be unscientific to claim that chimpanzees are vital to cancer research. On the contrary, it is reasonable to conclude that cancer research would not suffer, if the use of chimpanzees for this purpose were prohibited in the US. Genetic differences between humans and chimpanzees, make them an unsuitable model for cancer, as well as other human diseases

    Magnetization Plateau of an S=1 Frustrated Spin Ladder

    Full text link
    We study the magnetization plateau at 1/4 of the saturation magnetization of the S=1 antiferromagnetic spin ladder both analytically and numerically, with the aim of explaining recent experimental results on BIP-TENO by Goto et al. We propose two mechanisms for the plateau formation and clarify the plateau phase diagram on the plane of the coupling constants between spins

    First-principles study on scanning tunneling microscopy images of hydrogen-terminated Si(110) surfaces

    Full text link
    Scanning tunneling microscopy images of hydrogen-terminated Si(110) surfaces are studied using first-principles calculations. Our results show that the calculated filled-state images and local density of states are consistent with recent experimental results, and the empty-state images appear significantly different from the filled-state ones. To elucidate the origin of this difference, we examined in detail the local density of states, which affects the images, and found that the bonding and antibonding states of surface silicon atoms largely affect the difference between the filled- and empty-state images.Comment: 4 pages, and 4 figure
    corecore